Therapeutic Potential of Gut Microbiota in Hypertension: Mechanisms of Immune Modulation and Inflammation
Abstract
Emerging evidence links gut dysbiosis to numerous ailments, including hypertension and metabolic diseases. Multi-omics techniques have revealed that hypertensive individuals exhibit distinct alterations in their gut bacterial composition and metabolite profiles. The gut microbiome influences blood pressure through several mechanisms. For instance, microbiota-derived metabolites can have beneficial effects, such as those from short-chain fatty acids (SCFAs), or detrimental ones, like trimethylamine N-oxide (TMAO). These molecules modulate downstream signaling pathways via G protein-coupled receptors or direct immune cell activation. Furthermore, dysbiosis can compromise the gut epithelial barrier, leading to systemic inflammation that activates key regulatory pathways like the renin-angiotensin-aldosterone system (RAAS), the autonomic nervous system, and the immune system. Given these connections, the gut microbiome is a promising therapeutic target for hypertension. This review explores the potential of modulating the gut microbiota to manage blood pressure, focusing on the underlying mechanisms of immune modulation, inflammation, and microbial metabolites. By focusing on the 'how' rather than the 'what' of hypertension, it is identified that immune-mediated inflammation is orchestrated by the gut microbiota, as the core mechanism driving the disease. Gut dysbiosis is triggered by environmental factors like high-salt diets, perpetuates a pro-inflammatory state that undermines the efficacy of conventional antihypertensive drugs and contributes to treatment-resistant hypertension. Consequently, modulating the gut microbiota through targeted interventions, including dietary fiber, probiotics, and fecal transplantation, might represents a critical evolution in treatment. This approach moves beyond managing symptoms to directly correcting the inflammatory dysfunction at the heart of the disease, offering a powerful strategy to complement existing therapies.
KEYWORDS: hypertension, inflammation, gut microbiota, metabolite
Full Text:
PDFReferences
Valilshchykov M, Babalyan V, Markina Т, Kumetchko M, Boiko L, Romaev S. The enalapril use in arterial hypertension stimulates the reparative processes in fractures of the proximal femur. Indones Biomed J. 2022; 14(1): 36-44, CrossRef.
World Health Organization [Internet]. Global Report on Hypertension [updated 2023 Sep 19 cited 2024 Dec 14]. Available from: www.who.int.
Utami SL, Simamora D, Idawati I, Widjaja JH. ACE I/D and A2350G polymorphisms are correlated with body mass index, but not with body weight and essential hypertension: Study in javanese postmenopausal women. Mol Cell Biomed Sci. 2024; 8(2): 96-104, CrossRef.
Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, Patrick DM, Smart CD, Kleyman TR, Kingery J, et al. Hypertension. Circ Res. 2021;128:908-933, CrossRef.
Ramayani OR. Childhood hyperuricemia as risk factor of hypertension in adulthood. Indones Biomed J. 2012; 4(1): 12-6, CrossRef.
Ramadhanti R, Helda. Association of hypertension and chronic kidney disease in population aged ≥18 years old. Mol Cell Biomed Sci. 2021; 5(3): 137-44, CrossRef.
Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005; 365(9455): 217-23, CrossRef.
Murray CJL, Lopez AD. Measuring the global burden of disease. N Engl J Med. 2013; 369(5): 448-57, CrossRef.
Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet. 2014; 383(9932): 1899-911, CrossRef.
Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National health and nutrition examination survey, 2011-2012. NCHS Data Brief. 2013; (133): 1-8, PMID.
GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017; 377(1): 13-27, CrossRef.
Lawes CM, Hoorn S Vander, Rodgers A. Global burden of blood-pressure-related disease, 2001. Lancet. 2008; 371(9623): 1513-8, CrossRef.
Nguyen BA, Alexander MR, Harrison DG. Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol. 2024; 20(8): 530-40, CrossRef.
Harrison DG, Patrick DM. Immune mechanisms in hypertension. Hypertension. 2024; 81(8): 1659-74, CrossRef.
Berillo O, Schiffrin EL. Advances in understanding of the role of immune cell phenotypes in hypertension and associated vascular disease. Can J Cardiol. 2024; 40(12): 2321-39, CrossRef.
Bujanowicz A, Skrzypczyk P. Immunological mechanisms of arterial damage in pediatric patients with primary hypertension. Cent Eur J Immunol. 2023; 48(2): 150-7, CrossRef.
Schreiber S, Arndt P, Morton L, Garza AP, Müller P, Neumann K, et al. Immune system activation and cognitive impairment in arterial hypertension. Am J Physiol Cell Physiol. 2024; 327(6): C1577-90, CrossRef.
Alam R, Ahsan H, Khan S. The role of malondialdehyde (MDA) and ferric reducing antioxidant power (FRAP) in patients with hypertension. Mol Cell Biomed Sci. 2023; 7(2): 58-64, CrossRef.
Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018; 215(1): 21-33, CrossRef.
Meiliana A, Dewi NM, Wijaya A. Lifestyle modifications and nutraceutical interventions in the prevention and management of metabolic syndrome. Indones Biomed J. 2025; 17(3): 207-32, CrossRef.
Ramadhan AY, Rosdiana DS. The prospect of probiotics to treat metabolic syndrome. Mol Cell Biomed Sci. 2024; 8(2): 71-80, CrossRef.
Meiliana A, Wijaya A. Gut microbiota, obesity and metabolic dysfunction. Indones Biomed J. 2011; 3(3): 150-67, CrossRef.
Dong C, Yang Y, Wang Y, Hu X, Wang Q, Gao F, et al. Gut microbiota combined with metabolites reveals unique features of acute myocardial infarction patients different from stable coronary artery disease. J Adv Res. 2023; 46: 101-12, CrossRef.
Duan Y, Wu X, Yang Y, Gu L, Liu L, Yang Y, et al. Marked shifts in gut microbial structure and neurotransmitter metabolism in fresh inmates revealed a close link between gut microbiota and mental health: A case-controlled study. Int J Clin Health Psychol. 2022; 22(3): 100323, CrossRef.
Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol. 2023; 23(1): 9-23, CrossRef.
Wu C, Zhao Y, Zhang Y, Yang Y, Su W, Yang Y, et al. Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR's cholesterol-decreasing efficacy in patients. J Adv Res. 2021; 37: 197-208, CrossRef.
Zhang X, Yang Y, Zhang F, Yu J, Sun W, Wang R, et al. Traditional Chinese medicines differentially modulate the gut microbiota based on their nature (Yao-Xing). Phytomedicine. 2021; 85: 153496, CrossRef.
Yang YN, Wang QC, Xu W, Yu J, Zhang H, Wu C. The berberine-enriched gut commensal Blautia producta ameliorates high-fat diet (HFD)-induced hyperlipidemia and stimulates liver LDLR expression. Biomed Pharmacother. 2022: 155: 113749, CrossRef.
McCulloch JA, Davar D, Rodrigues RR, Badger JH, Fang JR, Cole AM, et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. 2022; 28(3): 545-56, CrossRef.
Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018; 215(1): 21-33, CrossRef.
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II-induced hypertension and vascular dysfunction. J Exp Med. 2007; 204(10): 2449-60, CrossRef.
Harrison DG, Vinh A, Lob H, Madhur MS. Role of the adaptive immune system in hypertension. Curr Opin Pharmacol. 2010; 10(2): 203-7, CrossRef.
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012; 4(3): a006049, CrossRef.
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007; 204(10): 2449-60, CrossRef.
Markó L, Kvakan H, Park JK, Qadri F, Spallek B, Binger KJ, et al. Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension. 2012; 60(6): 1430-6, CrossRef.
Wei SY, Wang YX, Zhang QF, Zhao SL, Diao TT, et al. Multiple mechanisms are involved in salt-sensitive hypertension-induced renal injury and interstitial fibrosis. Sci Rep. 2017; 7: 45952, CrossRef.
Xiao L, Kirabo A, Wu J, Saleh MA, Zhu L, Wang F, et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ Res. 2015; 117(6): 547-557, CrossRef.
Wenzel P. Monocytes as immune targets in arterial hypertension. Br J Pharmacol. 2019; 176(12): 1966-77, CrossRef.
Oh J, Matkovich SJ, Riek AE, Bindom SM, Shao JS, Head RD, et al. Macrophage secretion of miR-106b-5p causes renin-dependent hypertension. Nat Commun. 2020; 11(1): 4798, CrossRef.
Hughson MD, Gobe GC, Hoy WE, Manning RD, Douglas-Denton R, Bertram JF. Associations of glomerular number and birth weight with clinicopathological features of african americans and whites. Am J Kidney Dis. 2008; 52(1): 18-28, CrossRef.
Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, et al. Lysozyme M-positive monocytes mediate angiotensin ii-induced arterial hypertension and vascular dysfunction. Circulation. 2011; 124(12): 1370-81, CrossRef.
De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, et al. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin ii-infused macrophage colony-stimulating factor-deficient mice. Arterioscler Thromb Vasc Biol. 2005; 25(10): 2106-13, CrossRef.
Okuda T, Grollman A. Passive transfer of autoimmune induced hypertension in the rat by lymph node cells. Tex Rep Biol Med. 1967; 25(2): 257-64, PMID.
Gantini L, Bakri S, Wijaya A, Santoso A. Inflammation is associated with vascular remodeling - repairing balances in hypertensive obese subjects. Indones Biomed J. 2011; 3(2): 110-5, CrossRef.
Olsen F. Inflammatory cellular reaction in hypertensive vascular disease in man. Acta Pathol Microbiol Scand A. 1972; 80(2): 253-6, CrossRef.
Svendsen UG. The role of thymus for the development and prognosis of hypertension and hypertensive vascular disease in mice following renal infarction. Acta Pathol Microbiol Scand A. 1976; 84(3): 235-43, CrossRef.
Ba D, Takeichi N, Kodama T, Kobayashi H. Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J Immunol. 1982; 128(3): 1211-6, CrossRef.
Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010; 465(7300): 885-90, CrossRef.
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017; 377(12): 1119-31, CrossRef.
Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: A secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018; 391(10118): 319-28, CrossRef.
Everett BM, Cornel JH, Lainscak M, Anker SD, Abbate A, Thuren T, et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation. 2019; 139(10): 1289-99, CrossRef.
Rothman AMK, Macfadyen J, Thuren T, Webb A, Harrison DG, Guzik TJ, et al. Effects of interleukin-1β inhibition on blood pressure, incident hypertension, and residual inflammatory risk: A secondary analysis of CANTOS. Hypertension. 2020; 75(2): 477-82, CrossRef.
Alexander MR, Norlander AE, Elijovich F, Atreya RV, Gaye A, Gnecco JS, et al. Human monocyte transcriptional profiling identifies IL-18 receptor accessory protein and lactoferrin as novel immune targets in hypertension. Br J Pharmacol. 2019; 176(12): 2015-27, CrossRef.
Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, et al. Rosuvastatin to prevent vascular events in men and women with elevated c-reactive protein. N Engl J Med. 2008; 359(21): 2195-207, CrossRef.
Dalekos GN, Elisaf M, Bairaktari E, Tsolas O, Siamopoulos KC. Increased serum levels of interleukin-1beta in the systemic circulation of patients with essential hypertension: additional risk factor for atherogenesis in hypertensive patients? J Lab Clin Med. 1997; 129(3): 300-8, CrossRef.
Rabkin SW. The role of interleukin 18 in the pathogenesis of hypertension-induced vascular disease. Nat Clin Pract Cardiovasc Med. 2009; 6(3): 192-9, CrossRef.
Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond GR. IL‐1β and IL ‐18: inflammatory markers or mediators of hypertension? Br J Pharmacol. 2014; 171(24): 5589-602, CrossRef.
Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine. 2013; 64(2): 477-85, CrossRef.
Saleh MA, Norlander AE, Madhur MS. Inhibition of interleukin 17-A but not interleukin-17F signaling lowers blood pressure and reduces end-organ inflammation in angiotensin ii-induced hypertension. JACC Basic Transl Sci. 2016; 1(7): 606-16, CrossRef.
Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. Cardiovasc Res. 2021; 117(5): 1274-83, CrossRef.
Liu W, Chang C, Hu H, Yang H. Interleukin-23: A new atherosclerosis target. J Interferon Cytokine Res. 2018; 38(10): 440-4, CrossRef.
Zhang M, Cai ZR, Zhang B, Cai X, Li W, Guo Z, et al. Functional polymorphisms in interleukin-23 receptor and susceptibility to coronary artery disease. DNA Cell Biol. 2014; 33(12): 891-7, CrossRef.
Elmarakby AA, Quigley JE, Imig JD, Pollock JS, Pollock DM. TNF-α inhibition reduces renal injury in DOCA-salt hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2008; 294(1): R76-83, CrossRef.
Therrien FJ, Agharazii M, Lebel M, Larivire R. Neutralization of tumor necrosis factor-alpha reduces renal fibrosis and hypertension in rats with renal failure. Am J Nephrol. 2012; 36(2): 151-61, CrossRef.
Venegas-Pont M, Manigrasso MB, Grifoni SC, Lamarca BB, Maric C, Racusen LC, et al. Tumor necrosis factor-alpha antagonist etanercept decreases blood pressure and protects the kidney in a mouse model of systemic lupus erythematosus. Hypertension. 2010; 56(4): 643-9, CrossRef.
Zhang J, Patel MB, Griffths R, Mao A, Song YS, Karlovich NS, et al. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension. 2014; 64(6): 1275-81, CrossRef.
Mehaffey E, Majid DSA. Tumor necrosis factor-, kidney function, and hypertension. Am J Physiol Renal Physiol. 2017; 313(4): F1005-8, CrossRef.
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016; 14(8): e1002533, CrossRef.
Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014; 32(8): 834-41, CrossRef.
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012; 489(7415): 242-9, CrossRef.
Beale AL, O'Donnell JA, Nakai ME, Nanayakkara S, Vizi D, Carter K, et al. The gut microbiome of heart failure with preserved ejection fraction. J Am Heart Assoc. 2021; 10(13): e020654, CrossRef.
Pugh D, Gallacher PJ, Dhaun N. Management of hypertension in chronic kidney disease. Drugs. 2019; 79(4): 365-79, CrossRef.
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol. 2018; 14(7): 442-56, CrossRef.
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008; 6(10): 776-88, CrossRef.
Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009; 106(10): 3698-703, CrossRef.
Nakai M, Ribeiro RV, Stevens BR, Gill P, Muralitharan RR, Yiallourou S, et al. essential hypertension is associated with changes in gut microbial metabolic pathways: a multisite analysis of ambulatory blood pressure. Hypertension. 2021; 78(3): 804-15, CrossRef.
Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015; 65(6): 1331-40, CrossRef.
O'Donnell JA, Zheng T, Meric G, Marques FZ. The gut microbiome and hypertension. Nat Rev Nephrol. 2023; 19(3): 153-67, CrossRef.
Leeming ER, Johnson AJ, Spector TD, Roy CIL. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients. 2019; 11(12): 2862, CrossRef.
Olsen F. Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol Microbiol Scand C. 1980; 88(1): 1-5, CrossRef.
Olsen F. Evidence for an immunological factor in the hypertensive vascular disease. Acta Pathol Microbiol Scand A. 1971; 79(1): 22-6, CrossRef.
Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND. Early and sustained inhibition of nuclear factor-κb prevents hypertension in spontaneously hypertensive rats. journal of pharmacology and experimental therapeutics. 2005; 315(1): 51-7, CrossRef.
Brands MW, Banes-Berceli AKL, Inscho EW, Al-Azawi H, Allen AJ, Labazi H. Interleukin 6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and janus kinase 2/signal transducer and activator of transcription 3 activation. Hypertension. 2010; 56(5): 879-84, CrossRef.
Wen Y, Liu Y, Tang T, Lv L, Liu H, Ma K, et al. NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget. 2016; 7(34): 54290-302,
Huang B, Cheng Y, Usa K, Liu Y, Baker MA, Mattson DL, et al. Renal tumor necrosis factor α contributes to hypertension in dahl salt-sensitive rats. Sci Rep. 2016; 6: 21960, CrossRef.
McShane L, Tabas I, Lemke G, Kurowska-Stolarska M, Maffia P. TAM receptors in cardiovascular disease. Cardiovasc Res. 2019; 115(8): 1286-95, CrossRef.
Nosalski R, Mikolajczyk T, Siedlinski M, Saju B, Koziol J, Maffia P, et al. Nox1/4 inhibition exacerbates age dependent perivascular inflammation and fibrosis in a model of spontaneous hypertension. Pharmacol Res. 2020; 161: 105235, CrossRef.
Macritchie N, Grassia G, Noonan J, Cole JE, Hughes CE, Schroeder J, et al. The aorta can act as a site of naïve CD4+ T-cell priming. Cardiovasc Res. 2020; 116(2): 306-16, CrossRef.
Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R, Fardella S, et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun. 2016; 7: 13035, CrossRef.
Carnevale D, Pallante F, Fardella V, Fardella S, Iacobucci R, Federici M, et al. The angiogenic factor PlGF mediates a neuroimmune interaction in the spleen to allow the onset of hypertension. Immunity. 2014; 41(5): 737-52, CrossRef.
Rodriguez-Iturbe B, Lanaspa MA, Johnson RJ. The role of autoimmune reactivity induced by heat shock protein 70 in the pathogenesis of essential hypertension. Br J Pharmacol. 2019; 176(12): 1829-38, CrossRef.
Nosalski R, Siedlinski M, Denby L, McGinnigle E, Nowak M, Cat AND, et al. T-cell-derived miRNA-214 Mediates perivascular fibrosis in hypertension. Circ Res. 2020; 126(8): 988-1003, CrossRef.
Hoyer FF, Nahrendorf M. Interferon-γ regulates cardiac myeloid cells in myocardial infarction. Cardiovasc Res. 2019; 115(13): 1815-16, CrossRef.
Matrougui K, Zakaria AE, Kassan M, Choi S, Nair D, Gonzalez-Villalobos RA, et al. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. Am J Pathol. 2011; 178(1): 434-41, CrossRef.
Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, Harrison DG. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010; 55(2): 500-7, CrossRef.
Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice. Hypertension. 2015; 65(3): 569-76, CrossRef.
Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, et al. COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020; 116(10): 1666-87, CrossRef.
Bienvenu LA, Noonan J, Wang X, Peter K. Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities. Cardiovasc Res. 2020; 116(14): 2197-206, CrossRef.
Di Napoli M, Papa F. Association between blood pressure and C-reactive protein levels in acute ischemic stroke. Hypertension. 2003; 42(6): 1117-23, CrossRef.
Sesso HD, Wang L, Buring JE, Ridker PM, Gaziano JM. Comparison of interleukin-6 and C-reactive protein for the risk of developing hypertension in women. Hypertension. 2007; 49(2): 304-10, CrossRef.
Zhang J, Rudemiller NP, Patel MB, Karlovich NS, Wu M, McDonough AA, et al. Interleukin-1 receptor activation potentiates salt reabsorption in angiotensin ii-induced hypertension via the NKCC2 co-transporter in the nephron. Cell Metab. 2016 Feb 9;23(2):360-8, CrossRef.
Litwin M, Kułaga Z. Obesity, metabolic syndrome, and primary hypertension. Pediatr Nephrol. 2021; 36(4): 825-37, CrossRef.
Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009; 41: 677-87, CrossRef.
Jermendy G, Horváth T, Littvay L, Steinbach R, Jermendy ÁL, Tárnoki ÁD, et al. Effect of genetic and environmental influences on cardiometabolic risk factors: A twin study. Cardiovasc Diabetol. 2011; 10: 1-8, CrossRef.
Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H, et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension. 2000; 36(4): 477-83, CrossRef.
Mitchell GF, DeStefano AL, Larson MG, Benjamin EJ, Chen MH, Vasan RS, et al. Heritability and a genome-wide linkage scan for arterial stiffness, wave reflection, and mean arterial pressure: The Framingham Heart Study. Circulation. 2005; 112(2): 194-9, CrossRef.
Huan T, Meng Q, Saleh MA, Norlander AE, Joehanes R, Zhu J, et al. Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Mol Syst Biol. 2015; 11(1): 799, CrossRef.
Rudemiller NP, Lund H, Priestley JRC, Endres BT, Prokop JW, Jacob HJ, et al. Mutation of SH2B3 (LNK), a genome-wide association study candidate for hypertension, attenuates Dahl salt-sensitive hypertension via inflammatory modulation. Hypertension. 2015; 65(5): 1111-7, CrossRef.
Devallire J, Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol. 2011; 82(10): 1391-402, CrossRef.
Huan T, Esko T, Peters MJ, Pilling LC, Schramm K, Schurmann C, et al. A meta-analysis of gene expression signatures of blood pressure and hypertension. PLoS Genet. 2015; 11(3): e1005035, CrossRef.
Saleh MA, McMaster WG, Wu J, Norlander AE, Funt SA, Thabet SR, et al. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. J Clin Invest. 2015; 125(3): 1189-202, CrossRef.
Gan L, Ye D, Feng Y, Pan H, Lu X, Wan J, Ye J. Immune cells and hypertension. Immunol Res. 2024; 72(1): 1-13, CrossRef.
Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011; 147(3): 629-40, CrossRef.
Mielke LA, Jones SA, Raverdeau M, Higgs R, Stefanska A, Groom JR, et al. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J Exp Med. 2013; 210(6): 1117-24, CrossRef.
Goldberg EL, Shchukina I, Asher JL, Sidorov S, Artyomov MN, Dixit VD. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat Metab. 2020; 2(1): 50-61, CrossRef.
Dong JY, Szeto IMY, Makinen K, Gao Q, Wang J, Qin LQ, Zhao Y. Effect of probiotic fermented milk on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr. 2013; 110(7): 1188-94, CrossRef.
Dinakis E, Nakai M, Gill P, Ribeiro R, Yiallourou S, Sata Y, et al. Association between the gut microbiome and their metabolites with human blood pressure variability. Hypertension. 2022; 79(8): 1690-701, CrossRef.
Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2017; 120(2): 312-23, CrossRef.
Zhou X, Li J, Guo J, Geng B, Ji W, Zhao Q, et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 2018; 6(1):66, CrossRef.
Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017; 551: 585-9, CrossRef.
Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018; 132(6): 701-18, CrossRef.
Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020; 1 6(1): 38-51, CrossRef.
Jaworska K, Huc T, Samborowska E, Dobrowolski L, Bielinska K, Gawlak M, et al. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS One. 2017; 12(12): e0189310, CrossRef.
Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar SVR, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol. 2017; 28(1): 76-83, CrossRef.
Yang Z, Wang Q, Liu Y, Wang L, Ge Z, Li Z, et al. Gut microbiota and hypertension: Association, mechanisms and treatment. Clin Exp Hypertens. 2023; 45(1): 2195135, CrossRef.
Chen L, He FJ, Dong Y, Huang Y, Wang C, Harshfield GA, Zhu H. Modest sodium reduction increases circulating short-chain fatty acids in untreated hypertensives: A randomized, double-blind, placebo-controlled trial. Hypertension. 2020; 76(1): 73-9, CrossRef.
Mortensen FV, Nielsen H, Mulvany MJ, Hessov I. Short chain fatty acids dilate isolated human colonic resistance arteries. Gut. 1990; 31(12): 1391-4, CrossRef.
Duttaroy AK. Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: A review. Nutrients. 2021; 13(1): 144, CrossRef.
Ge X, Zheng L, Zhuang R, Yu P, Xu Z, Liu G, et al. The gut microbial metabolite trimethylamine n-oxide and hypertension risk: a systematic review and dose-response meta-analysis. Adv Nutr. 2020; 11: 66-76, CrossRef.
Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018; 16(3): 171-81, CrossRef.
Olalekan SO, Bakare OO, Faponle AS, Okwute PG. A review of gut microbial metabolites and therapeutic approaches in hypertension. Bull Natl Res Cent. 2024; 48: 95, CrossRef.
Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017; 135(10): 964-77, CrossRef.
Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF, et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension. 2016; 67(2): 469-74, CrossRef.
Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017; 5(1): 14, CrossRef.
Mahgoup EM. "Gut Microbiota as a Therapeutic Target for Hypertension: Challenges and Insights for Future Clinical Applications" "Gut Microbiota and Hypertension Therapy." Current Hypertension Reports 2025 27:1 [Internet]. 2025 [cited 2025 Apr 28];27:1-13, CrossRef.
Mei X, Mell B, Manandhar I, Aryal S, Tummala R, Kyoung J, et al. Repurposing a drug targeting inflammatory bowel disease for lowering hypertension. J Am Heart Assoc. 2022; 11(24): e027893, CrossRef.
Smits MM, Fluitman KS, Herrema H, Davids M, Kramer MHH, Groen AK, Belzer C, de Vos WM, Cahen DL, Nieuwdorp M, et al. Liraglutide and sitagliptin have no effect on intestinal microbiota composition: A 12-week randomized placebo-controlled trial in adults with type 2 diabetes. Diabetes Metab. 2021; 47(5): 101223, CrossRef.
van Bommel EJM, Herrema H, Davids M, Kramer MHH, Nieuwdorp M, van Raalte DH. Effects of 12-week treatment with dapagliflozin and gliclazide on faecal microbiome: Results of a double-blind randomized trial in patients with type 2 diabetes. Diabetes Metab. 2020; 46(2): 164-8, CrossRef.
Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015; 528(7581): 262-6, CrossRef.
Liao X, Song L, Zeng B, Liu B, Qiu Y, Qu H, et al. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine. 2019; 44: 665-74, CrossRef.
Tong X, Xu J, Lian F, Yu X, Zhao Y, Xu L, et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional chinese herbal formula: A multicenter, randomized, open label clinical trial. mBio. 2018; 9(3): e02392-17, CrossRef.
Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014; 63(5): 727-35, CrossRef.
Zhang W, Xu JH, Yu T, Chen QK. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother. 2019; 118: 109131, CrossRef.
de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017; 40(1): 54-62, CrossRef.
Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017; 23(7): 850-8, CrossRef.
Chen HQ, Gong JY, Xing K, Liu MZ, Ren H, Luo JQ. Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in antihypertensive treatment. Front Med. 2022; 8: 742394, CrossRef.
Kyoung J, Atluri RR, Yang T. Resistance to antihypertensive drugs: Is gut microbiota the missing link? Hypertension. 2022; 79(10): 2138-47, CrossRef.
Durgan DJ, Zubcevic J, Vijay-Kumar M, Yang T, Manandhar I, Aryal S, et al. Prospects for leveraging the microbiota as medicine for hypertension. Hypertension. 2024; 81(5): 951-63, CrossRef.
González A, López B, Ravassa S, San José G, Latasa I, Butler J, et al. Myocardial interstitial fibrosis in hypertensive heart disease: From mechanisms to clinical management. Hypertension. Hypertension. 2024; 81(2): 218-28, CrossRef.
Dai H, Bragazzi NL, Younis A, Zhong W, Liu X, Wu J, et al. Worldwide trends in prevalence, mortality, and disability-adjusted life years for hypertensive heart disease from 1990 to 2017. Hypertension. 2021; 77(4): 1223-33, CrossRef.
de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J, et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail. 2019; 21(3): 272-85, CrossRef.
Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009; 78: 929-58, CrossRef.
Van Der Slot-Verhoeven AJ, Van Dura EA, Attema J, Blauw B, DeGroot J, Huizinga TWJ, et al. The type of collagen cross-link determines the reversibility of experimental skin fibrosis. Biochim Biophys Acta. 2005; 1740(1): 60-7, CrossRef.
López B, Ravassa S, Moreno MU, José GS, Beaumont J, González A, et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. 2021; 18(7): 479-98, CrossRef.
Ding Y, Wang Y, Jia Q, Wang X, Lu Y, Zhang A, et al. Morphological and functional characteristics of animal models of myocardial fibrosis induced by pressure overload. Int J Hypertens. 2020; 2020: 3014693, CrossRef.
Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol. 2022; 179(5): 882-99, CrossRef.
Herum KM, Lunde IG, McCulloch AD, Christensen G. The soft- and hard-heartedness of cardiac fibroblasts: Mechanotransduction signaling pathways in fibrosis of the heart. J Clin Med. 2017; 6(5):53, CrossRef.
Díez J. Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens. 2007; 9(7): 546-50, CrossRef.
Nemtsova V, Vischer AS, Burkard T. Hypertensive heart disease: A narrative review series-part 1: pathophysiology and microstructural changes. J Clin Med. 2023; 12(7): 2606, CrossRef.
Mckinsey TA, Foo R, Anene-Nzelu CG, Travers JG, Vagnozzi RJ, Weber N, Thum T. Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: from basic mechanisms to early clinical development. Cardiovasc Res. 2023; 118(18): 3482-98, CrossRef.
Tang WHW, Kitai T, Hazen SL. Gut Microbiota in cardiovascular health and disease. Circ Res. 2017; 120(7): 1183-96, CrossRef.
Kitai T, Tang WHW. Gut microbiota in cardiovascular disease and heart failure. Clin Sci. 2018; 132(1): 85-91, CrossRef.
Zabell A, Tang WHW. Targeting the Microbiome in Heart Failure. Current Treatment Options in Cardiovascular Medicine. 2017; 19(4): 27, CrossRef.
Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017; 12(3): e0174099, CrossRef.
Katsimichas T, Ohtani T, Motooka D, Tsukamoto Y, Kioka H, Nakamoto K, et al. Non-ischemic heart failure with reduced ejection fraction is associated with altered intestinal microbiota. Circ J. 2018; 82(6): 1640-50, CrossRef.
Cui X, Ye L, Li J, Jin L, Wang W, Li S, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018; 8(1): 635, CrossRef.
Kamo T, Akazawa H, Suzuki JI, Komuro I. Novel concept of a heart-gut axis in the pathophysiology of heart failure. Korean Circ J. 2017; 47(5): 663-9, CrossRef.
Ahmad AF, Ward NC, Dwivedi G. The gut microbiome and heart failure. Curr Opin Cardiol. Curr Opin Cardiol. 2019; 34(2): 225-32, CrossRef.
Brahmbhatt DH, Cowie MR. Heart failure: classification and pathophysiology. Medicine. 2018; 46(10): 587-93, CrossRef.
Metra M, Teerlink JR. Heart failure. Lancet. 2017; 390(10106): 1981-995, CrossRef.
DOI: https://doi.org/10.18585/inabj.v17i4.3565
Copyright (c) 2025 The Prodia Education and Research Institute

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
The Prodia Education and Research Institute